

ANL/ALCF-19/5

A Case Study with the HACCmk Kernel in

SYCL

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

http://www.anl.gov/
http://www.osti.gov/
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/scitech/)
mailto:reports@osti.gov

ANL/ALCF-19/5

A Case Study with the HACCmk Kernel in SYCL

prepared by Zheming Jin

Argonne Leadership Computing Facility, Argonne National Laboratory

December 1, 2019

A Case Study with the HACCmk Kernel in SYCL

I. INTRODUCTION

The SYCL standard specifies a cross-platform abstraction
layer that enables programming of heterogeneous computing
systems using standard C++ [1]. In the Open Computing
Language (OpenCL) programming model, host and device
codes are written in different languages [2]. To improve
development productivity and performance portability, the
SYCL programming model combines host and device codes
for an application in a type-safe way.

In this report, we are interested in applying the SYCL
programming model to a computationally intensive routine
derived from the Hardware Accelerated Cosmology Code
(HACC) framework for a study on performance portability on
a heterogeneous computing device. We use Intel® OneAPI
toolkit [3] to build the OpenCL and SYCL programs, and
evaluate the performance of both implementations on Intel®
integrated GPUs.

We find that the SYCL implementation can achieve the
same performance as the OpenCL implementation after we
specify a target backend for the compiler to build the SYCL
program in offline compilation. Without the specification of a
target backend, the runtime will have to compile intermediate
device codes for a target platform. Such runtime overhead
may become significant compared to the execution of a kernel
on a target device. As the kernel routine is compute-bound, we
evaluate the impact of the number of compute units upon the
kernel’s raw performance using two GPUs. When the
hardware resource is not underutilized, we can obtain almost
linear performance speedup from 48 compute units to 72
compute units in offline compilation, which indicates that the
number of compute units on a GPU are important to
improving the raw performance of a compute-bound kernel.
The experimental results show that SYCL is a promising
programming model for heterogeneous computing.

The remainder of the report is organized as follows: In
Section II, we describe the SYCL programming model, the
steps to map an OpenCL program to a SYCL program, and
the architecture of an integrated GPU. Section III introduces
the kernel routine, and presents the OpenCL and SYCL
implementations of the kernel. In Section IV, we evaluate the
performance of the implementations on the GPUs. Section V
concludes the report.

II. BACKGROUND

A. SYCL

Many C++ programming models for hardware
accelerators, such as C++ AMP, CUDA, Thrust C++, are
single source [4]. Such languages are easy to use and can be
type-checked as everything is in one source file. They
facilitate offline compilation so that the binary can be checked

at compile time. A SYCL program, which is based on a single-
source C++ model as shown in Figure 1, can be compiled for
a host while kernel(s) are extracted from the source and
compiled for a device. A SYCL device compiler parses a
SYCL application and generates intermediate representations
(IR). A standard host compiler parses the same application to
generate native host code. The SYCL runtime will load IR at
runtime, enabling other compilers to parse it into native device
code. Hence, the flow allows people to continue to use
existing toolchains for a host platform, and choose preferred
device compilers for a target platform.

The design of SYCL allows for the combination of the
performance and portability features of OpenCL and the
flexibility of using high-level C++ abstractions. Most of the
abstraction features of C++, such as templates, classes, and
operator overloading, are available for a kernel function in
SYCL. Some C++ language features, such as virtual
functions, virtual inheritance, throwing/catching exceptions,
and run-time type-information, are not allowed inside kernels
due to the capabilities of the underlying OpenCL standard.
These features are available outside kernel scope.

A SYCL application is logically structured in three scopes:
application scope, command-group scope, and kernel scope.
The kernel scope specifies a single-kernel function that will
be executed on a device after compilation. The command-
group scope specifies a unit of work that will comprise of a
kernel function and buffer accessors. The application scope
specifies all other codes outside of a command-group scope.
A SYCL kernel function may be defined by the body of a
lambda function, by a function object or by the binary
generated from an OpenCL kernel string. Although an
OpenCL kernel is interoperable in the SYCL programming
model, in this report we focus on the implementation of kernel
functions using lambda functions.

Figure 1. SYCL is a single-source programming model

Table I lists the steps of creating an OpenCL application
and their corresponding steps in SYCL. The first three steps
in OpenCL are reduced to the instantiation of a device selector
class in SYCL. A selector searches a device of a user’s
provided preference (e.g., GPU) at runtime. The SYCL queue
class is an out-of-order queue that encapsulates a queue for
scheduling kernels on a device. A kernel function in SYCL
can be invoked as a lambda function. The function is grouped
into a command group object, and then it is submitted to
execution via command queue. Hence, steps 6 to 10 in
OpenCL are mapped to the definition of a lambda function
and submission of its command group to a SYCL queue. Data
transfer between host and device can be implicitly realized by
SYCL accessors, and the event handling can be handled by
SYCL event class. Releasing the allocated sources of queue,
program, kernel, and memory objects in SYCL is handled by
the runtime which implicitly calls destructors inside scopes.
Compared to the number of OpenCL programming steps, the
SYCL programming model reduces the number of
programming steps by half with higher abstractions,
offloading the burden of managing OpenCL devices, program
objects, kernels, and memory objects to a compiler.

B. Integrated GPU

While mainstream integrated GPUs are produced by
ARM, Intel®, and NVIDIA, we give a summary of the
architecture of an Intel® integrated GPU on which we obtain
our experimental results. Such class of GPUs, with a central
processing unit (CPU) and a GPU integrated on the same chip,
is commonly used in laptops, desktop computers, and low-
cost servers. While they are not designed to outperform
discrete GPUs due to the power, area, and thermal constrains,
there is a need to have a good knowledge of a processor with
an integrated GPU.

This kind of GPU connects to CPU cores via a ring
interconnect, and they share main memory with CPU cores.
To reduce data access latency from main memory, an
integrated GPU maintains a memory hierarchy comprised of
register files, instruction and data caches. Some products
include an embedded DRAM (eDRAM) behind a last-level
cache to further reduce latency to system memory for higher
effective bandwidth. The building block of the graphics

compute architecture is the execution unit (EU). It is a
combination of simultaneous multi-threading and fine-
grained interleaved multi-threading. Each EU can run seven
threads concurrently to hide memory access latency. Each
thread has 128 SIMD-8 32-bit registers. Each EU can co-issue
to four instruction processing units (IPUs) including two
floating-point units (FPUs), a branch unit for branch
instructions, and a message unit for memory operations,
sampler operations, and other longer-latency system
communications. Each FPU supports both floating-point and
integer operations, and can execute up to four 32-bit floating-
point or integer operations. However, only one FPU provides
support for transcendental math functions and double-
precision floating-point operations.

From the perspective of an OpenCL kernel, multiple
kernel instances, which are equivalent to OpenCL work-items,
are executed simultaneously within a hardware thread. For a
SIMD-16 compile of a kernel, 112 kernel instances can be
executing concurrently on an EU. If there is a divergent
branch in one or more kernel instances, an EU’s branch unit
keeps track of such divergence and generates masks to control
which instances need to execute the branch.

Arrays of EUs are organized as a subslice. The number of
EUs per subslice depend on the generation of compute
architecture. Each subslice contains a thread dispatcher unit
and supporting instruction caches. In addition, it includes a
sampler unit for sampling texture and image surfaces, and a
data port memory management unit for a variety of general-
purpose buffer accesses, scatter/gather operations, as well as
shared memory accesses. Subslices are grouped into slices. In
general, a slice has three subslices, but the number of slices
depend on products and their generations. A slice integrates
additional logics for thread dispatch routing, banked L3 data
cache, banked shared memory, and fixed function logic for
atomics and barriers.

III. IMPLEMENTATIONS OF HACCMK KERNEL

The HACCmk kernel is publicly available in the CORAL
benchmark suite [5]. The size of the kernel is approximately
250 lines of code. The kernel consists of two loops: the outer

loop, which is parallelized with the OpenMP directive omp

parallel for [6] iterates over the particles. Each
iteration contains a function call to the major computational
kernel. The function contains a loop over particles for
computing the short-forces between the particles. The forces
are computed with single-precision floating-point operators.
As the kernel has two nested loops over all the particles, the
complexity of the algorithm is O(n2). A summary of the
kernel is available in [7]. In the following sections, we will
focus on the implementation of the HACCmk kernel using
SYCL and OpenCL.

A. OpenCL Kernel Program

As shown in Listing 1, the implementation of the OpenCL
kernel is a parallel design in which each work-item
corresponds to the workload of an iteration of the outer loop.

TABLE I. MAPPING FROM OPENCL TO SYCL

Step OpenCL SYCL

1 Platform query

Device selector class 2 Device query of a platform

3 Create context for devices

4 Create command queue for context Queue class

5 Create memory objects Buffer class

6 Create program object

Lambda expressions
7 Build a program

8 Create kernel(s)

9 Set kernel arguments

10
Enqueue a kernel object for execution

Submit a SYCL kernel

to a queue

11 Transfer data from device to host Implicit via accessors

12 Event handling Event class

13 Release resources Implicit via destructor

Hence, it is an N-dimensional range kernel whose global
work size (i.e., the number of work-items) is equal to the
number of particles specified in the outer loop. We refer to
this value as “nParticles”. These work-items in the global
work space can execute independently with each other.

Compared to the original kernel written in C, the function
signature is modified to be compatible with OpenCL kernel

syntax; xx1, yy1, zz1, mass1, vx2, vy2, vz2 arrays are
specified in the global memory address space with

__global. The restrict keyword is added for each
global memory address pointer to prevent the compiler from
creating unnecessary memory dependencies between non-
conflict memory load and store operations. Each unique
work-item is identified by querying the OpenCL API
function. The “Step10” subroutine in the original kernel is
flattened into the OpenCL kernel.

B. SYCL Kernel Program

Listing 2 shows the SYCL implementation of the
HACCmk kernel under the scope of command group. The
function object is given a command group handler object

(cgh) to perform all the necessary work required to process
data on a device using a kernel. The group of commands for
data transferring and processing is enqueued as a command

1 q.submit([&](cl::sycl::handler& cgh) {

2 auto acc_m =

 buf_m.get_access<sycl_read>(cgh);

3 auto acc_fsrmax =

 buf_fsrmax.get_access<sycl_read>(cgh);

4 auto acc_mp_rsm =

 buf_mp_rsm.get_access<sycl_read>(cgh);

5 auto acc_fcoeff =

 buf_fcoeff.get_access<sycl_read>(cgh);

6 auto acc_xx =

 buf_xx.get_access<sycl_read>(cgh);

7 auto acc_yy =

 buf_yy.get_access<sycl_read>(cgh);

8 auto acc_zz =

 buf_zz.get_access<sycl_read>(cgh);

9 auto acc_mass =

 buf_mass.get_access<sycl_read>(cgh);

10 auto acc_vx2 =

 buf_vx2.get_access<sycl_read_write>(cgh);

11 auto acc_vy2 =

 buf_vy2.get_access<sycl_read_write>(cgh);

12 auto acc_vz2 =

 buf_vz2.get_access<sycl_read_write>(cgh);

13 cgh.parallel_for<class HACCmk>(nParticles,

 [=](cl::sycl::id<1> i) {

14 const float ma0 = 0.269327f;

15 const float ma1 = -0.0750978f;

16 const float ma2 = 0.0114808f;

17 const float ma3 = -0.00109313f;

18 const float ma4 = 0.0000605491f;

19 const float ma5 = -0.00000147177f;

20 float dxc, dyc, dzc, m, r2, f, xi, yi, zi;

21 xi = 0.f; yi = 0.f; zi = 0.f;

22 float xxi = acc_xx[i];

23 float yyi = acc_yy[i];

24 float zzi = acc_zz[i];

25 float fsrrmax2 = acc_fsrmax[0];

26 float mp_rsm2 = acc_mp_rsm[0];

27 float fcoeff2 = acc_fcoeff[0];

28 int count = acc_m[0];

29 for (int j = 0; j < count; j++) {

30 dxc = acc_xx[j] - xxi;

31 dyc = acc_yy[j] - yyi;

32 dzc = acc_zz[j] - zzi;

33 r2 = dxc * dxc + dyc * dyc + dzc * dzc;

34 if (r2 < fsrrmax2) m = acc_mass[j];

35 else m = 0.f;

36 f = r2 + mp_rsm2;

37 f = m * (1.f / (f * cl::sycl::sqrt(f))

 – (ma0 + r2*(ma1 + r2*(ma2 +

 r2*(ma3 + r2*(ma4 + r2*ma5))))));

38 xi = xi + f * dxc;

39 yi = yi + f * dyc;

40 zi = zi + f * dzc;

41 }

42 acc_vx2[i] = acc_vx2[i] + xi * fcoeff2;

43 acc_vy2[i] = acc_vy2[i] + yi * fcoeff2;

44 acc_vz2[i] = acc_vz2[i] + zi * fcoeff2;

45 });

46 });

Listing 2. Implementation of the HACCmk kernel routine in SYCL

kernel void haccmk(const int count,

 const float fsrrmax2,

 const float mp_rsm2,

 const float fcoeff,

 global float* restrict xx1,

 global float* restrict yy1,

 global float* restrict zz1,

 global float* restrict mass1,

 global float * restrict vx2,

 global float * restrict vy2,

 global float * restrict vz2)

{

 const float ma0 = 0.269327f;

 const float ma1 = -0.0750978f;

 const float ma2 = 0.0114808f;

 const float ma3 = -0.00109313f;

 const float ma4 = 0.0000605491f;

 const float ma5 = -0.00000147177f;

 int i = get_global_id(0);

 float dxc, dyc, dzc, m, r2, f, xi, yi, zi;

 xi = 0.f;

 yi = 0.f;

 zi = 0.f;

 float xxi = xx1[i];

 float yyi = yy1[i];

 float zzi = zz1[i];

 for (int j = 0; j < count; j++) {

 dxc = xx1[j] - xxi;

 dyc = yy1[j] - yyi;

 dzc = zz1[j] - zzi;

 r2 = dxc * dxc + dyc * dyc + dzc * dzc;

if (r2 < fsrrmax2) m = mass1[j];

else m = 0.f;

f = r2 + mp_rsm2;

f = m * (1.f / (f * sqrt(f)) –

 (ma0 + r2*(ma1 + r2*(ma2 + r2*(ma3 +

 r2*(ma4 + r2*ma5))))));

 xi = xi + f * dxc;

 yi = yi + f * dyc;

 zi = zi + f * dzc;

 }

 vx2[i] = vx2[i] + xi * fcoeff;

 vy2[i] = vy2[i] + yi * fcoeff;

 vz2[i] = vz2[i] + zi * fcoeff;

}

Listing 1. The HACCmk kernel in OpenCL

group on a device. A command group is submitted to a SYCL
command queue for execution.

A SYCL buffer differs from an OpenCL buffer in that it
can handle both storage and ownership of data. A device
accessor in SYCL allows a kernel, which is defined in a
lambda function, to access data stored in a device buffer.
Accesses to the buffers are controlled via device accessors

constructed through the get_access method of the buffers

(lines 2-12). For brevity, we use sycl_read and

sycl_read_write to represent the access mode

cl::sycl::access::mode::read and

cl::sycl::access::mode::read_write,
respectively. In the kernel function, the identifiers of global

work-items are retrieved with the member functions of the id
class (line 13). The floating-point math function (line 36)
needs to be qualified in the SYCL namespace to tell a SYCL
compiler that the math function, which is not confused with
the math function called on a host, will be executed on a
device. Overall, it is relatively straightforward to port an
OpenCL application to a SYCL application by following the
steps listed in Table I.

IV. EXPERIMENT

A. Setup

We choose two server platforms in our experiment. One
server has an Intel® Xeon® E3-1284L v4 CPU running at 2.9
GHz. The CPU has four cores and each core supports two
threads. The integrated GPU is Broadwell GT3e, Generation
8.0. It contains 48 execution units, and each execution unit
corresponds to a compute unit in the OpenCL programming
model. The maximum dynamic frequency of the GPU is 1.15
GHz. The other server has an Intel® Xeon® E3-1585 v5 CPU
running at 3.5 GHz. The CPU also has four cores and each
core supports two threads. The integrated GPU is Skylake
GT3e, Generation 9.0. It contains 72 execution units. The
maximum dynamic frequency of the GPU is 1.15 GHz. A few
details of the two GPUs are listed in Table II.

For the GPU compute runtime, the device version is
OpenCL 2.1 NEO and the driver version 19.43.14583. The
maximum work-group size on the GPUs is 256. Empirical
results show that the runtime can select an appropriate work-
group size; therefore we have the OpenCL implementation
determine how to break the global work-items into
appropriate work-group instances. In our test, the number of
particles iterated in the inner loop is not fixed at 15,000. We
will evaluate the impact of the inner loop count upon the
application performance.

We build the OpenCL and SYCL programs using the
Intel® OneAPI toolkit [3] released recently. The SYCL
compiler supports two compilation modes. It can compile
device code into a device-agnostic form that can run on any
compatible devices. This is known as online compilation as
the device-agnostic code is compiled into a device-specific
form at runtime. In addition, the compiler allows production
of device-specific code at compile time. This process is known
as offline compilation. We compile both programs using the
optimization option “-O3”. Besides the OpenCL just-in-time
(online) compilation, we use an OpenCL offline compiler to
generate an intermediate representation from the kernel for
offline compilation.

We measure the elapsed time of executing the host
application as our performance metric. The host application
includes the initialization of OpenCL/SYCL runtime, the
construction of device buffers, data transfers from the host to
device, kernel execution on the device, and the return of
results from the device to host. The construction and
initialization of host buffers, and checking the status after
invoking each OpenCL built-in function are not included in
timing. We do not just consider kernel execution time on a
device as the performance metric due to the potentially
significant offloading overhead.

B. Experimental Results

We are interested in evaluating the impact of inner loop
count upon the performance of the application on the two
GPUs. Hence, in our test the global work size is 256 and the
number of particles iterated in the inner loop ranges from
1,875 to 60,000.

Table III shows the execution time in millisecond of the
OpenCL and SYCL applications after the program is TABLE II. SUMMARY OF THE TWO GPUS

Parameter
Iris™ Pro

Graphics P580

Iris™ Pro

Graphics P6300

Generation Gen9 (Skylake) Gen8 (Broadwell)

Technology 14 nm 14 nm

Base Freq. 0.35 GHz 0.3 GHz

Max Dynamic Freq. 1.15 GHz 1.15 GHz

Embedded DRAM 128 MB 128 MB

Slices/Subslices 3/9 2/6

Execution Units 72 48

Max GFLOPS 1325 883

TABLE III. THE EXECUTION TIME IN MILLISECOND ON THE P580 GPU.
THE GLOBAL WORK SIZE IS 256.

ILP
OpenCL

(online)

OpenCL

(offline)

SYCL

(online)

SYCL

(offline)

1.875K 217 1.3 81 1.2

3.75K 218 2.2 82 2.1

7.5K 221 3.7 84 3.8

15K 223 7.2 87 7.1

30K 231 14 94 13.6

60K 244 27 107 26

compiled using the offline and online modes on the P580
GPU. While the execution time of both programs is almost the
same in offline compilation, the SYCL program is on average
2.5X faster than the OpenCL program in online compilation.
On the other hand, the execution time is approximately linear
with the inner loop count (ILP) when the overhead of
compiling IR for the target GPU is eliminated in offline
compilation.

Table IV shows the execution time in millisecond of the
OpenCL and SYCL applications after the program is
compiled using the offline and online modes on the P6300
GPU. The execution time of both programs is almost the same
in offline compilation. The SYCL program is on average 2.9X
faster than the OpenCL program in online compilation. The
execution time of the OpenCL and SYCL programs in online
compilation is on average 20% and 5.5% longer than that on
the P580 GPU, respectively. The execution time is also
approximately linear with the ILP when the compilation
overhead is eliminated in offline compilation.

The results show that the overhead of online compilation
can become significant compared to the offline compilation
and/or kernel execution. Comparing the execution time in
offline compilation on the two GPUs, we do not observe any
performance improvement though the P580 GPU has 1.5X
more execution units. This indicates that executing 256 work-
items does not fully utilize 72 execution units on the GPU.

Table V shows the execution time in millisecond of the
OpenCL and SYCL applications when the global work size is
8,192 and the ILP is fixed at 15,000. Due to the significant
overhead of online compilation, the speedup is approximately
1.2. However, the performance speedup is close to 1.5 in
offline compilation. Assuming the execution units are fully
utilized, the number of compute units on a GPU are important
to improving the raw performance of a compute-bound kernel.

V. CONCLUSION

Unlike OpenCL, SYCL is a single-source programming
model that allows kernel codes to be embedded in host codes.
In this report, we describe the SYCL programming model and
list the migration steps from OpenCL to SYCL. While the
transformation is relatively straightforward given that the
SYCL programming model is an extension to OpenCL,

understanding buffer accessors, kernel execution model, and
program scopes is important for the smooth transformation of
the applications. When comparing the offline and online
compilations, we find that the overhead of online compilation
may become significant compared to offline compilation and
kernel execution on a device. However, the SYCL
implementations are as fast as the OpenCL implementations
in offline compilation on the GPUs. In addition, the number
of execution units is important to the performance of a
compute-bound kernel when the kernel can fully utilize
hardware resources on a GPU.

SYCL is a promising programing model in terms of
performance portability and programming productivity. The
maturing SYCL compiler will continue to promote
performance, portability, and productivity.

ACKNOWLEDGMENT

Results presented were obtained using the Chameleon testbed

supported by the National Science Foundation. This research

used resources of the Argonne Leadership Computing

Facility, which is a DOE Office of Science User Facility

supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

[2] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3), p.66.

[3] https://software.intel.com/sites/default/files/oneAPIProgrammingGui
de_5.pdf

[4] Wong, M., Richards, A., Rovatsou, M. and Reyes, R., 2016. Khronos’s
OpenCL SYCL to support heterogeneous devices for C++.

[5] https://asc.llnl.gov/CORAL-benchmarks/

[6] Chapman, B., Jost, G. and Van Der Pas, R., 2008. Using OpenMP:
portable shared memory parallel programming (Vol. 10). MIT press.

[7] https://asc.llnl.gov/CORAL-
benchmarks/Summaries/HACCmk_Summary_v1.0.pdf

TABLE IV. THE EXECUTION TIME IN MILLISECOND ON THE P6300

GPU. THE GLOBAL WORK SIZE IS 256.

ILP
OpenCL

(online)

OpenCL

(offline)

SYCL

(online)

SYCL

(offline)

1.875K 264 1.1 85 1.1

3.75K 264 1.8 88 1.9

7.5K 268 3.5 89 3.5

15K 269 6.7 92 6.8

30K 275 13.2 98 13.3

60K 289 26.3 112 26.3

TABLE V. COMPARISON OF THE EXECUTION TIME ON THE TWO

GPUS. THE GLOBAL WORK SIZE IS 8192 AND THE ILP IS 15,000.

GPU
OpenCL

(online)

OpenCL

(offline)

SYCL

(online)

SYCL

(offline)

P6300 275 12.7 97 12.4

P580 225 8.9 89 8.5

Speedup 1.2 1.4 1.1 1.5

https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACCmk_Summary_v1.0.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACCmk_Summary_v1.0.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

